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Abstract: We consider a relativistic effective field theory of vector boson whose vacuum

exhibits spontaneous breaking of Lorentz invariance. We argue that a simple model of this

type, considered recently by Kraus and Tomboulis, is obstructed from having a ultravio-

let completion which is unitary, analytic, and local, according to the diagnostic recently

suggested by Adams, Arkani-Hamed, Dubovsky, Nicolis, and Rattazzi.
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Relativistic quantum field theory, formally defined as Lorentz invariant ultraviolet

(UV) fixed point and a subsequent renormalization group flow, is an elegant formalism

successfully capturing the physics of elementary particles. As a quantum theory, they rest

on the foundation of unitary evolution of states in the Hilbert space. States themselves

form a representation of the Lorentz group, and the dynamics dictates the spectrum of

states and their interactions.

Gauge principle is a critical ingredient for keeping unitarity and Lorentz invariance

mutually compatible in models including states of spin one (or higher). When combined

with the requirement that the UV fixed point is a weakly coupled field theory with a

Lagrangian formulation, the list of possible models is incredibly short. They essentially

consist solely of asymptotically free gauge theories minimally coupled to matter fields which

are spin zero or spin half.

A closely related and familiar formalism in a theorist’s toolbox is the effective field

theory (reviewed, e.g., in [1 – 3]). Roughly speaking, effective field theory is the result of

flowing down the renormalization group from the UV to some scale of interest from the

point of view of a probe or a physical process. It is not possible to track the flow of all

the parameters of the renormalization group in closed analytic form. Nonetheless, one can

draw useful conclusions about the strength of physical effects through systematic analysis

of the dimensions of operators in the effective action, energy scales, and symmetries, within

the framework of effective field theory. A productive and frequently adopted attitude in the

use of effective field theory technique is to not dwell on the UV completion. By following

this dictum, model builders in cosmology, astrophysics, and particle physics are free to

introduce wide range of exotic models and to study their implications.

In light of the restrictiveness imposed by the consistency, however, there always persist

some degree of doubt that a given effective field theory model might not admit a consistent

UV completion. This is especially the case for exotic models exhibiting features such as

the spontaneous breaking of Lorentz invariance. It is not difficult to imagine that effective

field theories arising from a consistent UV complete theories are somehow restricted, e.g.,

in the numerical values of the coefficients of various operators in the effective action. These

conditions have not been explored systematically simply because they are difficult to derive

from first principles.

Along this line of thought, a simple connection relating positivity of forward scattering

amplitude, possibility of superluminal propagation in a non-trivial background, and a sign

of certain irrelevant operators in the effective field theory, was pointed out recently by

Adams, et.al. in [4]. A prototype of their argument is an effective field theory of the form

L =

∫

d4x

[

1

2
∂µφ∂

µφ+ c(∂µφ∂
µφ)2

]

. (1)

We take the space-time to be Minkowski. Since much of the discussion boils down to that

of a sign, let us also specify that we are using the metric signature convention (+,−,−,−).

The authors of [4] argued that the sign of c must be positive if such an effective field

theory is to arise from a consistent UV complete theory. Two independent arguments

pertaining to the IR and the UV manifestation of signs of c were presented in [4]:
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IR: If c is negative, there exists backgrounds around which fluctuations travels superlu-

minally, violating causality, and

UV: Imposing analyticity, unitarity, and the Froissart bound on forward 2 → 2 scattering

amplitudes constrain c to be positive.

The authors of [4] also provided an explanation of the IR issue as a manifestation of

a collective effect of the UV issue. The conclusion of [4] therefore is that a theory of the

form (1) with negative coupling c can not arise as an effective field theory of a UV complete

theory which is analytic, unitary, and satisfies the Froissart bound.

In this article, we examine the status of a model of spontaneous Lorentz symmetry

breaking along these lines. Specifically, we study a model whose effective Lagrangian (so

the theory has a cut-off) has the form

L =

∫

d4xN

[

−1

4
FµνF

µν − V (AµA
µ)

]

. (2)

The parameter N is a dimensionless constant and is taken to be large so that the theory

is weakly coupled. The vector field interacts via the Lorentz invariant interaction term

V (A2), which one might take to be of the form

V (A2) =
λ

4
(AµA

µ − v)2 (3)

which is minimized at

A2 = AµA
µ = v . (4)

This can a priori can be either positive (time-like) or negative (space-like) depending on

the sign of v. More generally, we take V (A2) to admit a power series expansion in A2 of

the form

V (A2) = v2A
2 + v4(A

2)2 + v6(A
2)3 + . . . , vn ∼ Λ4−n . (5)

Effective field theory models of spontaneous breaking of Lorentz invariance of this type

are also referred to as Bumble-Bee models and have been studied extensively by Kostelecky

and collaborators, e.g., in [5 – 9]. There also exist extensive body of literature quantifying

phenomenological bounds on effects of broken Lorentz invariance in various scenarios. The

goal of this note is orthogonal to these considerations, namely to see if the model (2) shows

any signs of obstructions from admitting a unitary, analytic, and local UV completion

following the criteria of [4]. One important motivation for pursuing this issue is to explore

the scope of applicability of the diagnostic of [4].

The general idea that photons might arise as a Goldstone boson for spontaneously

broken Lorentz invariance has a long history and appears to go back to Bjorken [10] who

considered a fermion model similar to that of Nambu and Jona-Lasinio [11] but with a

condensation in the vector component of the fermion biliniear

L = ψ̄i(i∂/ −m)ψi + λ2(ψ̄iγ
µψi)

2 . (6)

The original vision of Bjorken was to obtain a Lorentz invariant dynamics of quantum

electrodynamics in a non-Lorentz invariant gauge. It was later pointed out by Banks and
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Zaks [12], however, that the violation of gauge invariance is physical and has an effect on

gauge invariant observables. More recently, Kraus and Tomboulis studied an effective field

theory precisely of the form (2) and argued that

• such an action can arise as an effective dynamics for a model similar to that of Bjorken

where N corresponds to the number of fermion fields,1 and

• that the observable effects of Lorentz invariance can be made parametrically small

by taking N to be large.

To relate (2) to models of fermion bilinear condensates, Kraus and Tomboulis consid-

ered a model of the form

L = ψ̄i(i∂/−m)ψi +N

∞
∑

n=1

λ2n

(ψ̄iγ
µψi)

2n

N2n
, (7)

with the dimensionless coupling λ2n/Λ
4−6n being a number of order one. An effective field

theory of this form might arise, for example, by integrating out a massive vector boson of

mass Λ with respect to which the fermions are charged.

The action (7) can be re-written using the standard trick of introducing an auxiliary

field Aµ

L = ψ̄i(i∂/−A/−m)ψi −NV (AµA
µ) . (8)

In this formulation, Aµ is non-dynamical and imposes a constraint

ψ̄iγµψi + 2NAµV
′(A2) = 0 , (9)

and when Aµ is eliminated, reduces (8) to (7) where

λ2 =
1

4v2
, λ4 = − v4

16v4
2

, λ6 =
4v2

4
− v2v6

64v7
2

, . . . . (10)

If instead we integrate the fermions out first, a gauge invariant kinetic term of order N is

induced and we recover an effective action of the form (2), up to numerical factors of order

one and additional higher derivative operators.

The case where only v2 and λ2 are non-vanishing corresponds to the model of Bjorken.

The effective action in terms of Aµ field is the Proca action

L =

∫

d4xN

[

−1

4
FµνF

µν +
µ2

2
AµA

µ

]

(11)

where

µ2 = −2v2 = − 1

2λ2

. (12)

1The connection between the fermion model and the effective vector model was analyzed critically

in [13]. We thank Per Kraus for bringing this article to our attention. Independent of this observation, we

can explore the UV completability issue for the effective field theory of vector boson model (17).

– 3 –



J
H
E
P
0
8
(
2
0
0
8
)
0
4
0

The resulting dynamics, however, is crucially sensitive to the sign of λ2 [10, 12]. If λ2 is

negative, space-like components of the Aµ are stable and we expect to find the usual effec-

tive dynamics of massive vector bosons. This theory is in fact renormalizable and BRST

invariant, and can be quantized perturbatively when coupled minimally to matter [14]. If

λ2 is positive, one expects a run away behavior, which must somehow be stabilized in or-

der for the theory to have a vacuum. Higher order operators in V (AµAµ) were introduced

specifically for this purpose [15, 16].

While the effective Lagrangian (2) does appear to arise from a model of interacting

fermions (7), it does not necessarily follow that (2) can be embedded into a consistent

UV fixed point theory. The reason is simply the fact that (7) is not a renormalizable

field theory. While an effective action whose general from is that of (7) could arise from

integrating out a massive vector field, it is not obvious that there are enough freedom to

control the values of the coupling constants λ2n in the effective action. It is unnatural, in

particular, for λ2 to take on a positive value as a result of integrating out a massive vector

boson, which corresponds to fermion/anti-fermion interactions being repulsive.

More can be said about the range of possible values of λ2n if we were to consider

this model in 1+1 dimensions. There, we can take advantage of bosonisation techniques

(reviewed e.g. in [17 – 19]) to study these models in greater detail. The 1+1 dimensional

version of (7) is in fact a generalization of the Thirring model which can be analyzed along

the lines of [20 – 22], with additional higher order interactions of the form

λ2n(JµJ
µ)n ∼ λ2n

(

(ψ̄γµψ)(ψ̄γµψ)
)n ∼ λ2n(∂µφ∂

µφ)n (13)

In terms of the bosonized scalar field, this model resembles the “Ghost condensation”

model [23] if λ2 is positive, and might also contain an additional sine-Gordon potential if

the fermions are massive. The coupling constant λ4 is naturally seen in this formulation

to be constrained by the diagnostic of [4]. It is very natural to expect the values λ2n of

the irrelevant fermion couplings in 3+1 dimensions to be constrained along similar lines,

although we were unable to find a simple formulation of it at the present time.

These considerations, however, more directly concerns the fermion model (7) than the

effective theory (2). In fact, it is well known that in 1+1 dimensions, the fermions do not

even induce a kinetic term for the gauge fields. We will therefore shift our focus away from

the fermionic formulation (7) and concentrate on (2) more directly.

A different way in which (2) can arise as an effective field theory is from a renormal-

ization group flow of an Abelian Higgs system

L =

∫

d4xN

[

−1

4
FµνF

µν − V

(

1

φ2

0

Dµφ
∗Dµφ

)

+ Vφ(φ∗φ)

]

(14)

where the Higgs potential Vφ is minimized at |φ| = φ0, and the covariant derivative

Dµφ = (∂µ + iAµ)φ . (15)

The standard Higgs mechanism will give rise to a massive scalar Higgs and three compo-

nents of the vector field. The effective action (2) emerges by integrating out the massive
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Higgs. If the potential V (A2) has the form given in (3), we see that this gives rise to a

term in the effective action of the form

L = − 1

φ4
0

(Dµφ
∗Dµφ)2 (16)

with a negative coefficient. The criteria of [4] applies in classifying (14) as not having a

consistent UV completion.

While these results are suggestive of (2) being inconsistent, one can still argue that it

is a symptom specific to the massive Higgs field in (14) and not to the effective dynamics

of (2). There should exist a separate argument showing that (2) itself, which can also be

viewed as a gauged U(1) sigma model in the unitary gauge, suffers from consistency issues

of [4]. We will now provide arguments showing that this is indeed the case.

Consider specifically a model of the form which follows from (2) and (3)

L =

∫

d4xN

[

−1

4
FµνF

µν − λ

4
(AµA

µ − v)2
]

, λ > 0, v < 0 . (17)

We will view this model as gauged U(1) sigma model

L =

∫

d4xN

[

−1

4
FµνF

µν − λ

4
((∂µσ +Aµ)(∂µσ +Aµ) − v)2

]

, λ > 0, v < 0 .

(18)

In this formulation, it is manifest that (17) is the result of the σ field being eaten by the

gauge fields. The dynamics of this Goldstone boson before coupling to the gauge field has

the form

Nλ

(

v

2
∂µσ∂

µσ − 1

4
(∂µσ∂

µσ)2
)

, λ > 0, v < 0 . (19)

Because v is taken to be negative, this is precisely a model of the Ghost condensation

type [23]. The v and λ are chosen so that ∂σ is unstable to acquiring a space-like expectation

value. Let us chose the vacuum so that

σ = cx3 + σ̃ . (20)

As was explained in [23], there is a special value c = c∗ =
√
−v which the model will flow

to under Hubble friction, but when decoupled from gravity, any c > c∗ will give rise to a

stable vacuum. The effective action will take the form

L = Nλ

[

−c(c2 + v)∂3σ̃ +
(c2 + v)

2
∂iσ̃∂

iσ̃ − (3c2 + v)

2
(∂3σ̃)2 + c∂3σ̃(∂iσ̃∂

iσ̃ − (∂3σ̃)2)

−1

4
(∂iσ̃∂

iσ̃ − (∂3σ̃)2)2
]

(21)

where i = 0, 1, 2. The term which is first order in σ̃ is a total derivative and can be ignored

for this model. It is clear that when one restricts to the sector where ∂3σ̃ = 0, this model is

precisely the prototype (1) exhibiting the obstruction to UV completion. This shows that

models of Ghost condensation with space-like expectation value for ∂µφ is incompatible
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with analytic, unitary, and local UV fixed point. It also provides a strong hint that (17)

will exhibit similar pathology.

The remaining task is to show what happens to the dynamics of the σ̃ field when it

is eaten by the U(1) gauge field. If one chooses unitary gauge, this essentially amounts to

replacing ∂µσ̃ by Aµ in (21). This time, the linear term can not be ignored, and we are

forced to set c = c∗ =
√
−v. With this choice, the effective action of the form

L = Nλ

[

− 1

4λ
FµνF

µν + vA2

3 +
√
−vA3(AiA

i −A2

3) −
1

4
(AiA

i −A2

3)
2

]

(22)

This effective action is manifestly invariant under the 2+1 dimensional Lorentz symmetry.

In order to identify the manifestation of the UV obstruction, let us consider the forward

scattering of Ai in the 2+1 Lorentz invariant subspace, but with a small amount of Kaluza-

Klein mass µ2 from momentum along the x3 direction. The idea behind this step is that

if the dimensionally reduced theory in 2+1 dimension is obstructed from having a UV

completion, so must the 3+1 dimensional theory. Let us take µ2 ≪ −λv so that we can

ignore the dynamics of the A3 component. The effective action can then be written in the

form

L = N

[

−1

4
FijF

ij +
µ2

2
AiA

i − λ

4
(AiA

i)2
]

. (23)

Now, let us chose to consider the forward scattering of the longitudinal modes for a

collision along the x1 axis. The momentum and the polarization of the ingoing particles

will be set to

pi = (E, p, 0), ǫi =
(p,E, 0)

µ
(24)

and

pi = (E,−p, 0), ǫi =
(−p,E, 0)

µ
(25)

with E2 − p2 = µ2. The forward scattering amplitude due to the λ(AiA
i)2 term will

evaluate in this case to

M = − λ

N

s2

µ4
+ O(s) . (26)

We see that the s2 term enters with a negative coefficient. This is precisely the signature

of the obstruction to UV completion described in [4].

The main point of this note, in a nutshell, can be reduced to the arguments outlined

between equations (17) and (26). Since the conclusion relies only on the sign of (26) which

can be delicate to compute, we chose to include preliminary arguments leading up to this

conclusion. Note, in particular, that the signs of (16) and (26) has the same origin.

It should be noted that the issues of UV completability have more to do with the sign

of v4 rather than the sign of v2. Recall, in the discussion below (12), that the sign of v2
dictated whether or not one expects Aµ to develop a vacuum expectation value. To keep

the action properly bounded, however, it was necessary to keep v4 positive. This conclusion

– 6 –
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is more general than the specific form of the potential (3) that we considered. Any generic

potential

V (AµA
µ) = V (AiA

i −A2

3) (27)

which is minimized at Ai = 0, A3 =
√
−v so that

V ′(v) = 0, V ′′(v) > 0 (28)

will contain a term
1

2
V ′′(v)(AiA

i)2 + O(A3) (29)

which enters the Lagrangian with a negative sign.

We therefore conclude that the model (17) is obstructed from having a consistent UV

completion according to the criteria of Adams et al. [4]. It should be emphasized that this

criteria follows from imposing the condition that analyticity, locality, and unitarity are all

valid for the UV complete theory. This is a rather strong assumption. There may well be

a candidate UV complete theory which violates one or or more of these conditions but is

otherwise consistent. It would be very interesting to explore such a possiblity in an explicit

setup.

It might be worth pointing out that in terms of the original variable field Aµ, the

operator v4(AµA
µ)2 whose coefficient we identified as the diagnostic of the UV consistency

following [4] is non-derivative unlike for the case of the scalar field in the example of (1).

This is not too surprising in light of the fact that higher spin fields are in a certain sense

more non-local than the spinless fields.

In fact, it is also very unnatural for v2 to take on a positive value since it amounts to as-

signing a wrong sign for the kinetic term of the Higgs field in (14). From the fermion model

point of view, this corresponds to λ2 being positive, which is also unnatural. Specifically,

it can not arise from the exchange of massive vector bosons. The λ2 coupling is indeed

bounded in the case of the Thirring model. Although we did not find it in this article, it

seems very natural for such bound to follow from the consideration of UV completability

along the lines of [4] as well.2 This will provide additional perspective on the dynamical

treatment of the fermion models [10, 12, 13, 16].

There are other examples of manifestly Lorentz invariant effective field theories which

supports superluminal backgrounds in non-trivial backgrounds. One is the effective field

theory of the “k-essence” type [25] whose Lagrangian takes the form

L =

∫

d4x f(∂µφ∂
µφ) (30)

for some function f .34 Such an effective action have long been known to support superlu-

minal propagation if c2s = (1+2Xf ′′/f ′)−1 > 1 [27 – 29]. This is precisely the case for which

2After this article was published on the archive, a paper addressing precisely this issue appeared [24].

The positivity of λ2 in the treatment of [24] appears to rely on a stronger condition than the Froissart

bound.
3A special limit where f(X) =

√

X, and where the speed of sound is infinite, is the “cuscuton” model

of [26].
4Another possible pathology with the action of this form is that the map between velocity and momentum

field variables may not be one to one, for example, if f(X) = −aX + bX2 for a, b > 0.
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k-essence models could have interesting cosmological implications [30]. Another example

is a model of the form

L = −β1∂
µAσ∂µAσ − β2(∂µA

µ)2 − β3∂
µAσ∂σAµ + λ(AµAµ −m2) (31)

which was considered in [31 – 36]. Here, λ plays the role of the Lagrange multiplier con-

straining AµAµ = m2, where the case of m2 > 0 corresponding to time-like (therefore

distinct from the space-like condensate considered in [15]) vacuum expectation value was

considered in [33, 34], where it was shown that there will be superluminal propagating

mode if (β1 + β2 + β3)/β1 > 1. These effective field theory models are excellent candidates

to look for concrete signatures obstructing consistent UV completions, which we hope to

identify in a future work. A non-trivial part of this program might involve systematic

generalizations of the analysis of [4].
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